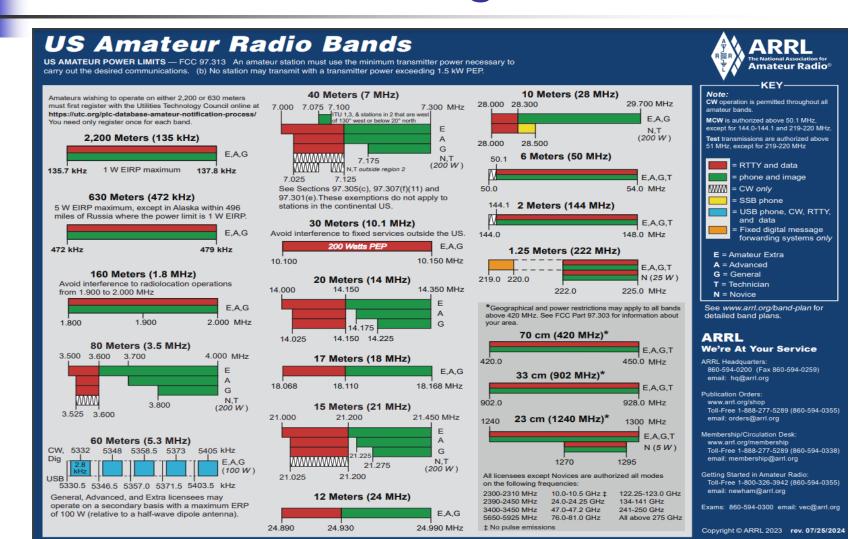


Why? What?

Features

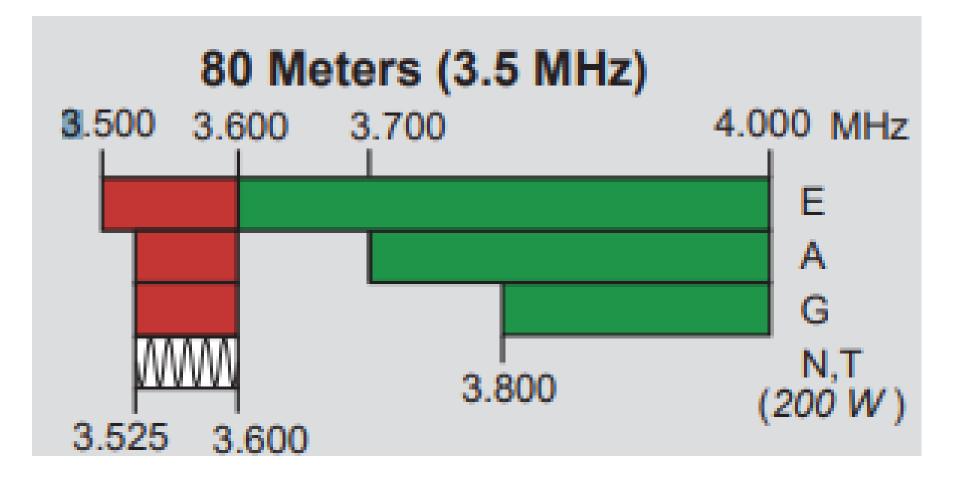
Robert Lombaerde, WB6WGM 16 October 2025



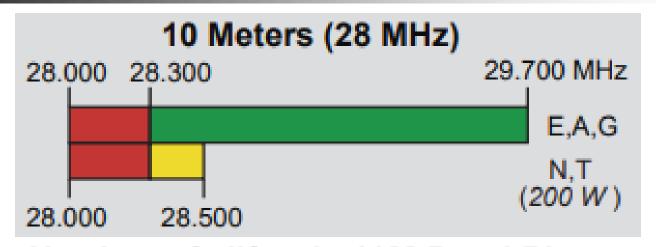
- If typically used frequencies (2m, 70cm) are unavailable, occupied, repeaters down Possibilities: HF,10,6, 220, UHF
- Specific propagation needed
 LOS, NVIS, distance, local, within buildings
- Specialty modes
 FM, APRS, packet, Winlink, CW, SSB, AM

South County ARES

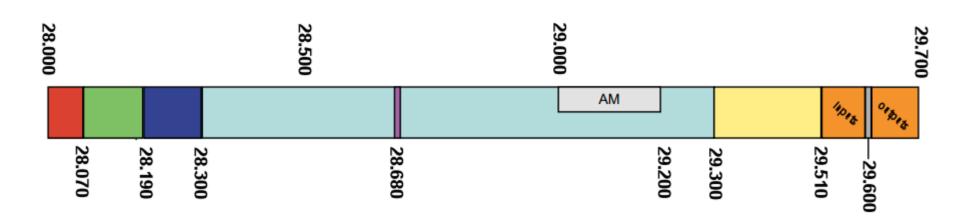
Bands available to Hams ARRL.org



- License class determines band
- License class determines where in band
- A licensed ham with privileges in a band may act as a "control operator" for hams without privileges in that band
- References: ARRL.org, NARCC.org

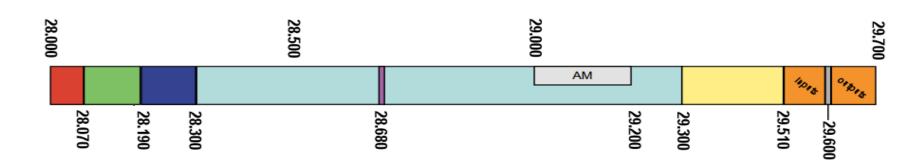


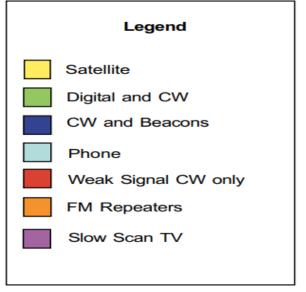
South County ARES



10 m interesting allocations

South County ARES

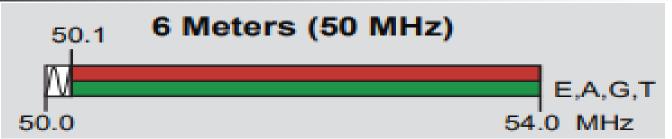

Northern California 10M Band Plan



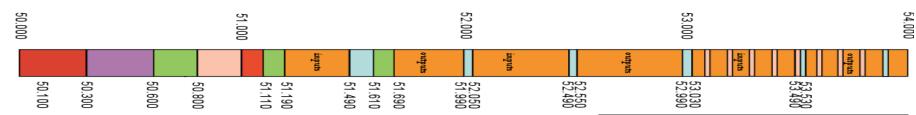
NorCal 10m Band Plan

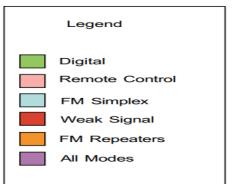
Northern California 10M Band Plan

For Repeater coordination in
Northern California
contact NARCC
www.narcc.org


For weak signal info see
ARRL www.arrl.org
Western States Weak Signal Society
www.wswss.org

For satellite information see
Amsat www.amsat.org


Specific Frequency info Note, this plan mirrors the ARRL band plan for 10 meters 28.000-28.070 CW 28.070-28.190 Digital/CW 28.190-28.300 CW & Beacons 28.300-29.300 Phone (no FM) 28.680 SSTV 29.000-29.200 Phone (AM) 29.300-29.510 Satellites 29.510-29.590 Repeater inputs National FM simplex 29.600 29.610-29.690 Repeater outputs Repeater pairs 29.54/64 29.52/62 29.56/66 29.58/68 Automatic beacons are limited to 28.200-28.300



6 m band plan

Northern California 6M Band Plan

For Repeater coordination in Northern California contact NARCC www.narcc.org

For weak signal info see the Western States Weak Signal Society http://www.wswss.org/

For satellite information see Amsat www.amsat.org

Specific Frequency info FM (simplex & repeaters), Digital and Remote control are 20 kHz channel spacing unless otherwise specified Note: Because of potential interference issues, please check with the NARCC 6M coordinator before using 51.12-18 & 51.62-68 for digital applications on mountaintop sites. 50.0 - 50.1 CW, Beacons 50.1 - 50.3 Weak signal, NO FM, 50.110 DX window 50.125 SSB calling 50.4 AM calling 50.3 - 50.6 All Modes 50.6 - 50.8 Experimental Digital 50.8 - 51.0 & 53.1, 53.2, 53.3, 53.4, 53.5, 53.6, 53.7& Remote Control 53.8 51.0 - 51.1 Pacific DX window Digital (notify NARCC 6M coordinator) 51.12 - 51.18 51.20 - 51.48 Repeater inputs 51.50-51.60 FM Simplex 51.62 - 51.68 Digital (notify NARCC 6M coordinator) 51.70 - 51.98 Repeater Outputs 52.00, 02, 04 FM Simplex 52.06 - 52.48 Repeater Inputs .54 Simplex -.525 Nationwide FM calling 52.50, 52.525, 52.56 - 52.98 Repeater Outputs 53.00 &53.02 FM Simplex 53.04 - 53.48 Repeater Inputs excluding RC 53.52 & 53.90 FM Simplex

53.54 - 53.98

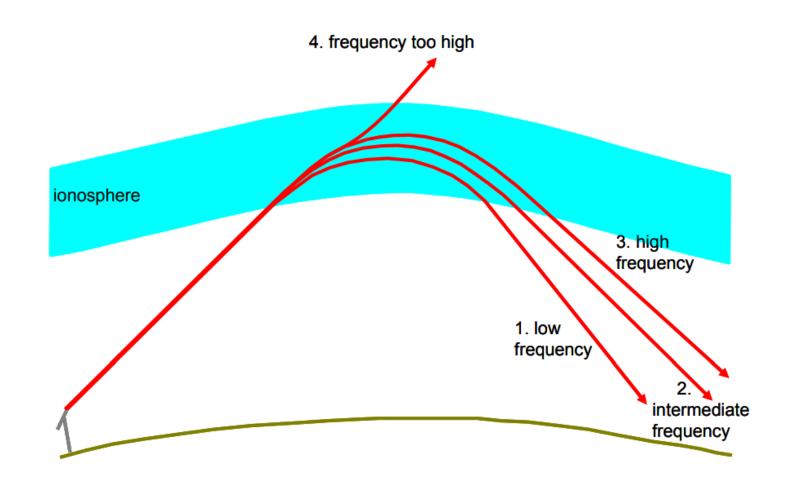
Repeater Outputs excluding RC/simplex

HF Band Features/Attributes 3.5 to 28 MHz (80-10m)

- Large antennas, high power radios (20 to 100W), not exactly hand-held portable, noisy conditions (80 40m)
- 80-40 m local comms, NVIS
- 20-15 m DX, continental, winlink
- 10 m short haul (normally) local ground wave, skip (CB)

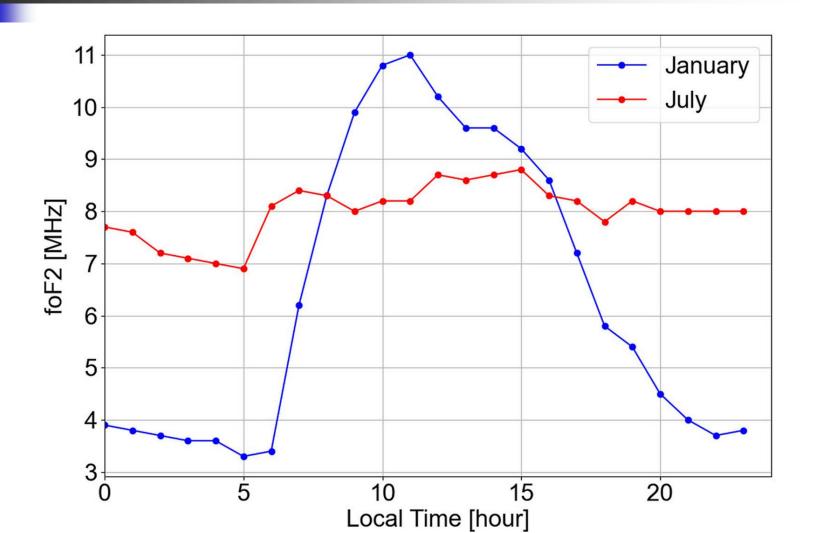
HF Band Features/Attributes 3.5 to 28 MHz (80-10m)

■ HF 80-40 m (3.5 – 7.3 MHz)


NVIS 400 mi radius, 80 night/40 day, noisy, ionosphere dependent, MUF, long wire antennas, 40 m foreign broadcast interference.

HF 20-10 m (14.0 - 29.7 MHz)

DX with low angle shorter antennas, continental comms ionosphere dependent, above 20m more sun spot cycle dependent, POTA, SOTA


Maximum Usable Frequency Frequency & Ionosphere

Maximum Usable Frequency MUF over Time

Today's **Propagation indices**

by Paul L Herrman, NONBH HamQSL

```
Solar-Terrestrial Data
Oct 2025 1827 GMT| Current Solar
                                    HF Conditions
                                          Day
       SN
                                  Band
                                          Poor
   K 2/Plntry
                                 80n-40n
                                               Good
                                          Good
                                               Good
                                 30n-20n
                                 17n-15n Good
   133.4 @ SEM
                                               Good
                                 12n-10n
                                          Good
                                Geonag Field QUIET
                                 Sig Noise Lvl
Boulder NoRpt
```

VHF-UHF Features/Attributes

- VHF 6-2m (50 148 MHz) LOS comms, simplex, repeaters, lower power radios, HTs, emcoms, speciality modes – APRS, Packet, DFing, small antennas, inexpensive equipment
- UHF 220MHz-70cm (220 450 MHz) LOS comms, mostly repeaters, low power, internet connections, smaller antennas, inexpensive equipment

6m, VHF, UHF and Higher Features/Attributes

- Small antennas, portable radios, battery operated, hand held, multi-channel, multi-band, convenient. inexpensive radios, SOTA, POTA
- limited range, local comms, LOS, more loss at higher frequencies
- Extend range: SSB vs FM, gain antennas, repeaters, linked repeaters connected to internet,

HF Antennas How Long is LONG

- Antennas based on ½ wavelength dipole
- One Wavelength= speed of light/frequency or 300,000,000 (m/s)/Frequency(Hz or c/s)
 300,000,000 (m/s)/150,000,000 (Hz)=2 m/c
 2m/cycle or 78 inches/cycle
 a <u>half wave</u> 150 MHz antenna is 39 inches long

A 2m 1/4 wave length vertical is 39/2 ~ 19 in

Calculating the length of 80 meter ½ wave dipole

- 300,000,000 (m/s)/ 3.5 MHz = 85.71 m
 (1 wavelength)
- $\frac{1}{2}$ wave dipole is then 85/2 = 42.5m
- In feet: 139.4 ft
- Will a 139.4 ft dipole fit in your garden?
- Will a ¼ wave vertical of 69.7ft ?
- Other HF bands are multiples –
 do the math! 40m~66 ft, 20 m~33 ft

Conclusion (1)

- Tech operators can operate on nonprivileged frequencies monitored by control operators with band privileges
- Long distance contacts are possible on HF bands, Ionosphere dependent
- NVIS operation on 80/40 m may allow comms to local inaccessible areas

Conclusion (2)

- Different modes than FM can increase range of simplex transmissions – SSB, CW – gain antennas can help also
- Specialty programs can provide increased capability and agency help APRS- tracking

Winlink – distance email

Packet – radio messaging

DFing – interference hunting

- Low HF bands require large antennas
- Comprise (shorter loaded) HF antennas are not as efficient
- VHF/UHF local comms more reliable than HF and cheaper to implement

The End

• Questions?